Close banner

2022-07-26 00:16:28 By : Mr. mike chen

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nature Metabolism volume  4, pages 813–825 (2022 )Cite this article

Communication between the periphery and the brain is key for maintaining energy homeostasis. To do so, peripheral signals from the circulation reach the brain via the circumventricular organs (CVOs), which are characterized by fenestrated vessels lacking the protective blood–brain barrier (BBB). Glial cells, by virtue of their plasticity and their ideal location at the interface of blood vessels and neurons, participate in the integration and transmission of peripheral information to neuronal networks in the brain for the neuroendocrine control of whole-body metabolism. Metabolic diseases, such as obesity and type 2 diabetes, can disrupt the brain-to-periphery communication mediated by glial cells, highlighting the relevance of these cell types in the pathophysiology of such complications. An improved understanding of how glial cells integrate and respond to metabolic and humoral signals has become a priority for the discovery of promising therapeutic strategies to treat metabolic disorders. This Review highlights the role of glial cells in the exchange of metabolic signals between the periphery and the brain that are relevant for the regulation of whole-body energy homeostasis.

This is a preview of subscription content

Get full journal access for 1 year

All prices are NET prices. VAT will be added later in the checkout. Tax calculation will be finalised during checkout.

Get time limited or full article access on ReadCube.

All prices are NET prices.

Garcia-Caceres, C. et al. Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nat. Neurosci. 22, 7–14 (2019).

CAS  PubMed  Article  Google Scholar 

Chowen, J. A., Frago, L. M. & Fernandez-Alfonso, M. S. Physiological and pathophysiological roles of hypothalamic astrocytes in metabolism. J. Neuroendocrinol. 31, e12671 (2019).

PubMed  Article  CAS  Google Scholar 

Clasadonte, J. & Prevot, V. The special relationship: glia–neuron interactions in the neuroendocrine hypothalamus. Nat. Rev. Endocrinol. 14, 25–44 (2018).

CAS  PubMed  Article  Google Scholar 

Al Massadi, O., Lopez, M., Tschop, M., Dieguez, C. & Nogueiras, R. Current understanding of the hypothalamic ghrelin pathways inducing appetite and adiposity. Trends Neurosci. 40, 167–180 (2017).

CAS  PubMed  Article  Google Scholar 

Friedman, J. M. Leptin and the endocrine control of energy balance. Nat. Metab. 1, 754–764 (2019).

CAS  PubMed  Article  Google Scholar 

Campbell, J. E. & Newgard, C. B. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat. Rev. Mol. Cell Biol. 22, 142–158 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Prevot, V. et al. The versatile tanycyte: a hypothalamic integrator of reproduction and energy metabolism. Endocr. Rev. 39, 333–368 (2018).

Yeo, G. S. & Heisler, L. K. Unraveling the brain regulation of appetite: lessons from genetics. Nat. Neurosci. 15, 1343–1349 (2012).

CAS  PubMed  Article  Google Scholar 

Cone, R. D. Anatomy and regulation of the central melanocortin system. Nat. Neurosci. 8, 571–578 (2005).

CAS  PubMed  Article  Google Scholar 

Dubern, B. et al. Mutational analysis of the pro-opiomelanocortin gene in French obese children led to the identification of a novel deleterious heterozygous mutation located in the α-melanocyte stimulating hormone domain. Pediatr. Res. 63, 211–216 (2008).

CAS  PubMed  Article  Google Scholar 

Chowen, J. A. et al. The role of astrocytes in the hypothalamic response and adaptation to metabolic signals. Prog. Neurobiol. 144, 68–87 (2016).

Kim, J. G. et al. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nat. Neurosci. 17, 908–910 (2014).

CAS  PubMed  Article  Google Scholar 

Varela, L. et al. Hunger-promoting AgRP neurons trigger an astrocyte-mediated feed-forward autoactivation loop in mice. J. Clin. Invest. 131, e144239 (2021).

CAS  PubMed Central  Article  Google Scholar 

Garcia-Caceres, C. et al. Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell 166, 867–880 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gao, Y. et al. Disruption of lipid uptake in astroglia exacerbates diet-induced obesity. Diabetes 66, 2555–2563 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Varela, L. et al. Astrocytic lipid metabolism determines susceptibility to diet-induced obesity. Sci. Adv. 7, eabj2814 (2021).

CAS  PubMed  Article  Google Scholar 

Kreft, M., Bak, L. K., Waagepetersen, H. S. & Schousboe, A. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation. ASN Neuro 4, e00086 (2012).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Bonvento, G. & Bolanos, J. P. Astrocyte–neuron metabolic cooperation shapes brain activity. Cell Metab. 33, 1546–1564 (2021).

CAS  PubMed  Article  Google Scholar 

Obradovic, M. et al. Leptin and obesity: role and clinical implication. Front Endocrinol. 12, 585887 (2021).

Glaum, S. R. et al. Leptin, the obese gene product, rapidly modulates synaptic transmission in the hypothalamus. Mol. Pharmacol. 50, 230–235 (1996).

Garcia-Caceres, C. et al. Differential acute and chronic effects of leptin on hypothalamic astrocyte morphology and synaptic protein levels. Endocrinology 152, 1809–1818 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fuente-Martin, E. et al. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes. J. Clin. Invest. 122, 3900–3913 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Banks, W. A. The blood–brain barrier as an endocrine tissue. Nat. Rev. Endocrinol. 15, 444–455 (2019).

CAS  PubMed  Article  Google Scholar 

Duquenne, M. et al. Leptin brain entry via a tanycytic LepR–EGFR shuttle controls lipid metabolism and pancreas function. Nat. Metab. 3, 1071–1090 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Balland, E. et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab. 19, 293–301 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Butiaeva, L. I. et al. Leptin receptor-expressing pericytes mediate access of hypothalamic feeding centers to circulating leptin. Cell Metab. 33, 1433–1448 (2021).

CAS  PubMed  Article  Google Scholar 

Djogo, T. et al. Adult NG2–glia are required for median eminence-mediated leptin sensing and body weight control. Cell Metab. 23, 797–810 (2016).

CAS  PubMed  Article  Google Scholar 

Muller, T. D. et al. Ghrelin. Mol. Metab. 4, 437–460 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chen, N. et al. Direct modulation of GFAP-expressing glia in the arcuate nucleus bi-directionally regulates feeding. eLife 5, e18716 (2016).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Clasadonte, J. et al. Prostaglandin E2 release from astrocytes triggers gonadotropin-releasing hormone (GnRH) neuron firing via EP2 receptor activation. Proc. Natl Acad. Sci. USA 108, 16104–16109 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lebrun, B. et al. Glial endozepines and energy balance: old peptides with new tricks. Glia 69, 1079–1093 (2021).

CAS  PubMed  Article  Google Scholar 

Bouyakdan, K. et al. The gliotransmitter ACBP controls feeding and energy homeostasis via the melanocortin system. J. Clin. Invest. 129, 2417–2430 (2019).

PubMed  PubMed Central  Article  Google Scholar 

Pellerin, L. & Magistretti, P. J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl Acad. Sci. USA 91, 10625–10629 (1994).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bergersen, L. H. Lactate transport and signaling in the brain: potential therapeutic targets and roles in body–brain interaction. J. Cereb. Blood Flow. Metab. 35, 176–185 (2015).

CAS  PubMed  Article  Google Scholar 

Rafiki, A., Boulland, J. L., Halestrap, A. P., Ottersen, O. P. & Bergersen, L. Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain. Neuroscience 122, 677–688 (2003).

CAS  PubMed  Article  Google Scholar 

Lhomme, T. et al. Tanycytic networks mediate energy balance by feeding lactate to glucose-insensitive POMC neurons. J. Clin. Invest. 131, e140521 (2021).

PubMed Central  Article  Google Scholar 

Ordenes, P. et al. Lactate activates hypothalamic POMC neurons by intercellular signaling. Sci. Rep. 11, 21644 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tirou, L. et al. Sonic Hedgehog receptor Patched deficiency in astrocytes enhances glucose metabolism in mice. Mol. Metab. 47, 101172 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nuzzaci, D. et al. Postprandial hyperglycemia stimulates neuroglial plasticity in hypothalamic POMC neurons after a balanced meal. Cell Rep. 30, 3067–3078 (2020).

CAS  PubMed  Article  Google Scholar 

Scharbarg, E. et al. Astrocyte-derived adenosine is central to the hypnogenic effect of glucose. Sci. Rep. 6, 19107 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Benani, A. et al. Food intake adaptation to dietary fat involves PSA-dependent rewiring of the arcuate melanocortin system in mice. J. Neurosci. 32, 11970–11979 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Allard, C. et al. Hypothalamic astroglial connexins are required for brain glucose sensing-induced insulin secretion. J. Cereb. Blood Flow. Metab. 34, 339–346 (2014).

CAS  PubMed  Article  Google Scholar 

Giaume, C., Leybaert, L., Naus, C. C. & Saez, J. C. Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles. Front. Pharm. 4, 88 (2013).

Cheung, G., Chever, O. & Rouach, N. Connexons and pannexons: newcomers in neurophysiology. Front. Cell Neurosci. 8, 348 (2014).

PubMed  PubMed Central  Article  Google Scholar 

Clasadonte, J., Scemes, E., Wang, Z., Boison, D. & Haydon, P. G. Connexin 43-mediated astroglial metabolic networks contribute to the regulation of the sleep–wake cycle. Neuron 95, 1365–1380 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fioramonti, X. et al. Characterization of glucosensing neuron subpopulations in the arcuate nucleus: integration in neuropeptide Y and pro-opio melanocortin networks? Diabetes 56, 1219–1227 (2007).

CAS  PubMed  Article  Google Scholar 

Song, Z., Levin, B. E., McArdle, J. J., Bakhos, N. & Routh, V. H. Convergence of pre- and postsynaptic influences on glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes 50, 2673–2681 (2001).

CAS  PubMed  Article  Google Scholar 

Claret, M. et al. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J. Clin. Invest. 117, 2325–2336 (2007).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Thaler, J. P. et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest. 122, 153–162 (2012).

CAS  PubMed  Article  Google Scholar 

Douglass, J. D., Dorfman, M. D., Fasnacht, R., Shaffer, L. D. & Thaler, J. P. Astrocyte IKKβ/NF-κB signaling is required for diet-induced obesity and hypothalamic inflammation. Mol. Metab. 6, 366–373 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cai, D. & Khor, S. Hypothalamic microinflammation. Handb. Clin. Neurol. 181, 311–322 (2021).

Zhang, X. et al. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell 135, 61–73 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kleinridders, A. et al. MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab. 10, 249–259 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Benzler, J. et al. Central inhibition of IKKβ/NF-κB signaling attenuates high-fat diet-induced obesity and glucose intolerance. Diabetes 64, 2015–2027 (2015).

CAS  PubMed  Article  Google Scholar 

Zhang, Y., Reichel, J. M., Han, C., Zuniga-Hertz, J. P. & Cai, D. Astrocytic process plasticity and IKKβ/NF-κB in central control of blood glucose, blood pressure, and body weight. Cell Metab. 25, 1091–1102 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rahman, M. H. et al. Astrocytic pyruvate dehydrogenase kinase-2 is involved in hypothalamic inflammation in mouse models of diabetes. Nat. Commun. 11, 5906 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Campbell, J. N. et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nat. Neurosci. 20, 484–496 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Prevot, V., Nogueiras, R. & Schwaninger, M. Tanycytes in the infundibular nucleus and median eminence and their role in the blood–brain barrier. Handb. Clin. Neurol. 180, 253–273 (2021).

Nampoothiri, S., Duquenne, M. & Prevot, V. in Glial-Neuronal Signaling in Neuroendocrine Systems, Vol. 11 (eds. Tasker, J. G., Bains, J. S. & Chowen, J. A.) 255–284 (Springer Cham, 2021).

Lee, D. A. et al. Dietary and sex-specific factors regulate hypothalamic neurogenesis in young adult mice. Front. Neurosci. 8, 157 (2014).

PubMed  PubMed Central  Article  Google Scholar 

Sharif, A., Fitzsimons, C. P. & Lucassen, P. J. Neurogenesis in the adult hypothalamus: a distinct form of structural plasticity involved in metabolic and circadian regulation, with potential relevance for human pathophysiology. Handb. Clin. Neurol. 179, 125–140 (2021).

Haan, N. et al. Fgf10-expressing tanycytes add new neurons to the appetite/energy-balance regulating centers of the postnatal and adult hypothalamus. J. Neurosci. 33, 6170–6180 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Langlet, F. et al. Tanycytic VEGF-A boosts blood–hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab. 17, 607–617 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mullier, A., Bouret, S. G., Prevot, V. & Dehouck, B. Differential distribution of tight junction proteins suggests a role for tanycytes in blood–hypothalamus barrier regulation in the adult mouse brain. J. Comp. Neurol. 518, 943–962 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Schaeffer, M. et al. Rapid sensing of circulating ghrelin by hypothalamic appetite-modifying neurons. Proc. Natl Acad. Sci. USA 110, 1512–1517 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jiang, H. et al. MCH neurons regulate permeability of the median eminence barrier. Neuron 107, 306–319 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Caron, E., Sachot, C., Prevot, V. & Bouret, S. G. Distribution of leptin-sensitive cells in the postnatal and adult mouse brain. J. Comp. Neurol. 518, 459–476 (2010).

CAS  PubMed  Article  Google Scholar 

Caro, J. F. et al. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet 348, 159–161 (1996).

CAS  PubMed  Article  Google Scholar 

Schwartz, M. W., Peskind, E., Raskind, M., Boyko, E. J. & Porte, D. Jr. Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat. Med. 2, 589–593 (1996).

CAS  PubMed  Article  Google Scholar 

Chmielewski, A. et al. Preclinical assessment of leptin transport into the cerebrospinal fluid in diet-induced obese minipigs. Obesity 27, 950–956 (2019).

CAS  PubMed  Article  Google Scholar 

Frederich, R. C. et al. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat. Med. 1, 1311–1314 (1995).

CAS  PubMed  Article  Google Scholar 

Hummel, K. P., Dickie, M. M. & Coleman, D. L. Diabetes, a new mutation in the mouse. Science 153, 1127–1128 (1966).

CAS  PubMed  Article  Google Scholar 

Wyse, B. M. & Dulin, W. E. The influence of age and dietary conditions on diabetes in the db mouse. Diabetologia 6, 268–273 (1970).

CAS  PubMed  Article  Google Scholar 

Lee, G. H. et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 379, 632–635 (1996).

CAS  PubMed  Article  Google Scholar 

Guillebaud, F. et al. Glial endozepines reverse high-fat diet-induced obesity by enhancing hypothalamic response to peripheral leptin. Mol. Neurobiol. 57, 3307–3333 (2020).

CAS  PubMed  Article  Google Scholar 

Yoo, S., Cha, D., Kim, D. W., Hoang, T. V. & Blackshaw, S. Tanycyte-independent control of hypothalamic leptin signaling. Front. Neurosci. 13, 240 (2019).

PubMed  PubMed Central  Article  Google Scholar 

Porniece Kumar, M. et al. Insulin signalling in tanycytes gates hypothalamic insulin uptake and regulation of AgRP neuron activity. Nat. Metab. 3, 1662–1679 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Collden, G. et al. Neonatal overnutrition causes early alterations in the central response to peripheral ghrelin. Mol. Metab. 4, 15–24 (2015).

CAS  PubMed  Article  Google Scholar 

Uriarte, M. et al. Circulating ghrelin crosses the blood–cerebrospinal fluid barrier via growth hormone secretagogue receptor dependent and independent mechanisms. Mol. Cell. Endocrinol. 538, 111449 (2021).

CAS  PubMed  Article  Google Scholar 

Liang, Q. et al. FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting. Diabetes 63, 4064–4075 (2014).

CAS  PubMed  Article  Google Scholar 

Owen, B. M. et al. FGF21 contributes to neuroendocrine control of female reproduction. Nat. Med. 19, 1153–1156 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Xu, C. et al. KLB, encoding β-Klotho, is mutated in patients with congenital hypogonadotropic hypogonadism. EMBO Mol. Med. 9, 1379–1397 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pena-León, V. et al. Prolonged breastfeeding protects from obesity by hypothalamic action of hepatic FGF21. Nat. Metab. (in the press).

Kaminskas, B. et al. Characterisation of endogenous players in fibroblast growth factor-regulated functions of hypothalamic tanycytes and energy-balance nuclei. J. Neuroendocrinol. 31, e12750 (2019).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Bottcher, M. et al. NF-κB signaling in tanycytes mediates inflammation-induced anorexia. Mol. Metab. 39, 101022 (2020).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Frayling, C., Britton, R. & Dale, N. ATP-mediated glucosensing by hypothalamic tanycytes. J. Physiol. 589, 2275–2286 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lazutkaite, G., Solda, A., Lossow, K., Meyerhof, W. & Dale, N. Amino acid sensing in hypothalamic tanycytes via umami taste receptors. Mol. Metab. 6, 1480–1492 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hofmann, K. et al. Tanycytes and a differential fatty acid metabolism in the hypothalamus. Glia 65, 231–249 (2017).

Geller, S. et al. Tanycytes regulate lipid homeostasis by sensing free fatty acids and signaling to key hypothalamic neuronal populations via FGF21 secretion. Cell Metab. 30, 833–844 e837 (2019).

CAS  PubMed  Article  Google Scholar 

Benford, H. et al. A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes. Glia 65, 773–789 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Sanders, N. M., Dunn-Meynell, A. A. & Levin, B. E. Third ventricular alloxan reversibly impairs glucose counterregulatory responses. Diabetes 53, 1230–1236 (2004).

CAS  PubMed  Article  Google Scholar 

Haddad-Tovolli, R. & Claret, M. Cooperative tanycytes fuel the neuronal tank. J. Clin. Invest. 131, e153279 (2021).

Bolborea, M., Pollatzek, E., Benford, H., Sotelo-Hitschfeld, T. & Dale, N. Hypothalamic tanycytes generate acute hyperphagia through activation of the arcuate neuronal network. Proc. Natl Acad. Sci. USA 117, 14473–14481 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cortes-Campos, C. et al. MCT expression and lactate influx/efflux in tanycytes involved in glia–neuron metabolic interaction. PLoS ONE 6, e16411 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Conductier, G. et al. Melanin-concentrating hormone regulates beat frequency of ependymal cilia and ventricular volume. Nat. Neurosci. 16, 845–847 (2013).

CAS  PubMed  Article  Google Scholar 

Rodriguez-Cortes, B. et al. Suprachiasmatic nucleus-mediated glucose entry into the arcuate nucleus determines the daily rhythm in blood glycemia. Curr. Biol. 32, 796–805 (2022).

CAS  PubMed  Article  Google Scholar 

Imbernon, M., Dehouck, B. & Prevot, V. Glycemic control: tanycytes march to the beat of the suprachiasmatic drummer. Curr. Biol. 32, R173–R176 (2022).

CAS  PubMed  Article  Google Scholar 

Marcelin, G. et al. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism. Mol. Metab. 3, 19–28 (2014).

CAS  PubMed  Article  Google Scholar 

Brown, J. M. et al. Role of hypothalamic MAPK/ERK signaling and central action of FGF1 in diabetes remission. iScience 24, 102944 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bentsen, M. A. et al. Transcriptomic analysis links diverse hypothalamic cell types to fibroblast growth factor 1-induced sustained diabetes remission. Nat. Commun. 11, 4458 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Scarlett, J. M. et al. Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents. Nat. Med. 22, 800–806 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Brown, J. M. et al. The hypothalamic arcuate nucleus-median eminence is a target for sustained diabetes remission induced by fibroblast growth factor 1. Diabetes 68, 1054–1061 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Samms, R. J. et al. Antibody-mediated inhibition of the FGFR1c isoform induces a catabolic lean state in Siberian hamsters. Curr. Biol. 25, 2997–3003 (2015).

CAS  PubMed  Article  Google Scholar 

Kim, S. et al. Tanycytic TSPO inhibition induces lipophagy to regulate lipid metabolism and improve energy balance. Autophagy 16, 1200–1220 (2020).

CAS  PubMed  Article  Google Scholar 

Drucker, D. J., Habener, J. F. & Holst, J. J. Discovery, characterization, and clinical development of the glucagon-like peptides. J. Clin. Invest. 127, 4217–4227 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Imbernon, M. et al. Tanycytes control hypothalamic liraglutide uptake and its anti-obesity actions. Cell Metab. 34, 1054–1063.e7 (2022).

CAS  PubMed  Article  Google Scholar 

Gabery, S. et al. Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight 5, e133429 (2020).

PubMed Central  Article  Google Scholar 

Rohrbach, A. et al. Ablation of glucokinase-expressing tanycytes impacts energy balance and increases adiposity in mice. Mol. Metab. 53, 101311 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yoo, S. et al. Tanycyte ablation in the arcuate nucleus and median eminence increases obesity susceptibility by increasing body fat content in male mice. Glia 68, 1987–2000 (2020).

PubMed  PubMed Central  Article  Google Scholar 

Fekete, C. & Lechan, R. M. Central regulation of hypothalamic–pituitary–thyroid axis under physiological and pathophysiological conditions. Endocr. Rev. 35, 159–194 (2014).

CAS  PubMed  Article  Google Scholar 

Muller-Fielitz, H. et al. Tanycytes control the hormonal output of the hypothalamic–pituitary–thyroid axis. Nat. Commun. 8, 484 (2017).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Farkas, E. et al. A glial–neuronal circuit in the median eminence regulates thyrotropin-releasing hormone-release via the endocannabinoid system. iScience 23, 100921 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Goodman, T. & Hajihosseini, M. K. Hypothalamic tanycytes-masters and servants of metabolic, neuroendocrine, and neurogenic functions. Front. Neurosci. 9, 387 (2015).

PubMed  PubMed Central  Article  Google Scholar 

Yoo, S. & Blackshaw, S. Regulation and function of neurogenesis in the adult mammalian hypothalamus. Prog. Neurobiol. 170, 53–66 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Weiss, S. et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J. Neurosci. 16, 7599–7609 (1996).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Li, J., Tang, Y. & Cai, D. IKKβ/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat. Cell Biol. 14, 999–1012 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Robins, S. C. et al. α-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors. Nat. Commun. 4, 2049 (2013).

CAS  PubMed  Article  Google Scholar 

Goodman, T. et al. Fibroblast growth factor 10 is a negative regulator of postnatal neurogenesis in the mouse hypothalamus. Development 147, dev180950 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Recabal, A. et al. The FGF2-induced tanycyte proliferation involves a connexin 43 hemichannel/purinergic-dependent pathway. J. Neurochem. 156, 182–199 (2021).

CAS  PubMed  Article  Google Scholar 

Orellana, J. A. et al. Glucose increases intracellular free Ca2+ in tanycytes via ATP released through connexin 43 hemichannels. Glia 60, 53–68 (2012).

Lee, D. A. et al. Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat. Neurosci. 15, 700–702 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yoo, S. et al. Control of neurogenic competence in mammalian hypothalamic tanycytes. Sci. Adv. 7, eabg3777 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mu, W. et al. Hypothalamic Rax+ tanycytes contribute to tissue repair and tumorigenesis upon oncogene activation in mice. Nat. Commun. 12, 2288 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Surbhi, Wittmann, G., Low, M. J. & Lechan, R. M. Adult-born proopiomelanocortin neurons derived from Rax-expressing precursors mitigate the metabolic effects of congenital hypothalamic proopiomelanocortin deficiency. Mol. Metab. 53, 101312 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Son, J. E. et al. Irx3 and Irx5 in Ins2–Cre+ cells regulate hypothalamic postnatal neurogenesis and leptin response. Nat. Metab. 3, 701–713 (2021).

CAS  PubMed  Article  Google Scholar 

Dou, Z., Son, J. E. & Hui, C. C. Irx3 and Irx5 — novel regulatory factors of postnatal hypothalamic neurogenesis. Front Neurosci. 15, 763856 (2021).

PubMed  PubMed Central  Article  Google Scholar 

Mirzadeh, Z. et al. Bi- and uniciliated ependymal cells define continuous floor-plate-derived tanycytic territories. Nat. Commun. 8, 13759 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Faubel, R., Westendorf, C., Bodenschatz, E. & Eichele, G. Cilia-based flow network in the brain ventricles. Science 353, 176–178 (2016).

CAS  PubMed  Article  Google Scholar 

Genzen, J. R., Yang, D., Ravid, K. & Bordey, A. Activation of adenosine A2B receptors enhances ciliary beat frequency in mouse lateral ventricle ependymal cells. Cerebrospinal Fluid Res. 6, 15 (2009).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Genzen, J. R., Platel, J. C., Rubio, M. E. & Bordey, A. Ependymal cells along the lateral ventricle express functional P2X(7) receptors. Purinergic Signal 5, 299–307 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Conductier, G. et al. Control of ventricular ciliary beating by the melanin concentrating hormone-expressing neurons of the lateral hypothalamus: a functional imaging survey. Front. Endocrinol. 4, 182 (2013).

Noble, E. E. et al. Control of feeding behavior by cerebral ventricular volume transmission of melanin-concentrating hormone. Cell Metab. 28, 55–68 e57 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Al-Massadi, O. et al. Multifaceted actions of melanin-concentrating hormone on mammalian energy homeostasis. Nat. Rev. Endocrinol. 17, 745–755 (2021).

CAS  PubMed  Article  Google Scholar 

Zilkha-Falb, R., Kaushansky, N. & Ben-Nun, A. The median eminence, a new oligodendrogenic niche in the adult mouse brain. Stem Cell Rep. 14, 1076–1092 (2020).

Marsters, C. M. et al. Oligodendrocyte development in the embryonic tuberal hypothalamus and the influence of Ascl1. Neural Dev. 11, 20 (2016).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Kohnke, S. et al. Nutritional regulation of oligodendrocyte differentiation regulates perineuronal net remodeling in the median eminence. Cell Rep. 36, 109362 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ren, Z. et al. Conditional knockout of leptin receptor in neural stem cells leads to obesity in mice and affects neuronal differentiation in the hypothalamus early after birth. Mol. Brain 13, 109 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Alonge, K. M. et al. Hypothalamic perineuronal net assembly is required for sustained diabetes remission induced by fibroblast growth factor 1 in rats. Nat. Metab. 2, 1025–1033 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lee, Y. et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487, 443–448 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Saab, A. S. et al. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91, 119–132 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ou, Z. et al. A GPR17–cAMP–lactate signaling axis in oligodendrocytes regulates whole-body metabolism. Cell Rep. 26, 2984–2997 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ren, H. et al. FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell 149, 1314–1326 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ren, H., Cook, J. R., Kon, N. & Accili, D. Gpr17 in AgRP neurons regulates feeding and sensitivity to insulin and leptin. Diabetes 64, 3670–3679 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Le Thuc, O. et al. Hypothalamic inflammation and energy balance disruptions: spotlight on chemokines. Front Endocrinol. 8, 197 (2017).

Wisse, B. E. et al. Evidence that lipopolysaccharide-induced anorexia depends upon central, rather than peripheral, inflammatory signals. Endocrinology 148, 5230–5237 (2007).

CAS  PubMed  Article  Google Scholar 

Jang, P. G. et al. NF-κB activation in hypothalamic pro-opiomelanocortin neurons is essential in illness- and leptin-induced anorexia. J. Biol. Chem. 285, 9706–9715 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jin, S. et al. Hypothalamic TLR2 triggers sickness behavior via a microglia–neuronal axis. Sci. Rep. 6, 29424 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Le Thuc, O. et al. Central CCL2 signaling onto MCH neurons mediates metabolic and behavioral adaptation to inflammation. EMBO Rep. 17, 1738–1752 (2016).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Pan, W. et al. Cytokine signaling modulates blood–brain barrier function. Curr. Pharm. Des. 17, 3729–3740 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Banks, W. A. Anorectic effects of circulating cytokines: role of the vascular blood–brain barrier. Nutrition 17, 434–437 (2001).

CAS  PubMed  Article  Google Scholar 

Valdearcos, M. et al. Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep. 9, 2124–2138 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kim, F. et al. Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance. Arterioscler. Thromb. Vasc. Biol. 28, 1982–1988 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhang, G. et al. Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497, 211–216 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Heiss, C. N. et al. The gut microbiota regulates hypothalamic inflammation and leptin sensitivity in Western diet-fed mice via a GLP-1R-dependent mechanism. Cell Rep. 35, 109163 (2021).

CAS  PubMed  Article  Google Scholar 

Kim, J. D., Yoon, N. A., Jin, S. & Diano, S. Microglial UCP2 mediates inflammation and obesity induced by high-fat feeding. Cell Metab. 30, 952–962 e955 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Dorfman, M. D. et al. Sex differences in microglial CX3CR1 signalling determine obesity susceptibility in mice. Nat. Commun. 8, 14556 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cansell, C. et al. Dietary fat exacerbates postprandial hypothalamic inflammation involving glial fibrillary acidic protein-positive cells and microglia in male mice. Glia 69, 42–60 (2021).

CAS  PubMed  Article  Google Scholar 

Chowen, J. A., Argente-Arizon, P., Freire-Regatillo, A. & Argente, J. Sex differences in the neuroendocrine control of metabolism and the implication of astrocytes. Front. Neuroendocrinol. 48, 3–12 (2018).

CAS  PubMed  Article  Google Scholar 

Binder, A. K. et al. Steroid Receptors in the Uterus and Ovary (Academic Press, 2015).

Giacobini, P. et al. Brain endothelial cells control fertility through ovarian-steroid-dependent release of semaphorin 3A. PLoS Biol. 12, e1001808 (2014).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Prevot, V., Cornea, A., Mungenast, A., Smiley, G. & Ojeda, S. R. Activation of erbB-1 signaling in tanycytes of the median eminence stimulates transforming growth factor β1 release via prostaglandin E2 production and induces cell plasticity. J. Neurosci. 23, 10622–10632 (2003).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Asarian, L. & Geary, N. Modulation of appetite by gonadal steroid hormones. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 1251–1263 (2006).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Prevot, V. et al. Normal female sexual development requires neuregulin-erbB receptor signaling in hypothalamic astrocytes. J. Neurosci. 23, 230–239 (2003).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pellegrino, G. et al. GnRH neurons recruit astrocytes in infancy to facilitate network integration and sexual maturation. Nat. Neurosci. 24, 1660–1672 (2021).

CAS  PubMed  Article  Google Scholar 

Zeng, F., Wang, Y., Kloepfer, L. A., Wang, S. & Harris, R. C. ErbB4 deletion predisposes to development of metabolic syndrome in mice. Am. J. Physiol. Endocrinol. Metab. 315, E583–E593 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Day, F. R. et al. Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nat. Commun. 6, 8464 (2015).

CAS  PubMed  Article  Google Scholar 

Prevot, V. & Sharif, A. The polygamous GnRH neuron: astrocytic and tanycytic communication with a neuroendocrineneuronal population. J. Neuroendocrinol. 34, e13104 (2020).

Swamydas, M., Bessert, D. & Skoff, R. Sexual dimorphism of oligodendrocytes is mediated by differential regulation of signaling pathways. J. Neurosci. Res. 87, 3306–3319 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cerghet, M. et al. Proliferation and death of oligodendrocytes and myelin proteins are differentially regulated in male and female rodents. J. Neurosci. 26, 1439–1447 (2006).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yasuda, K. et al. Sex-specific differences in transcriptomic profiles and cellular characteristics of oligodendrocyte precursor cells. Stem Cell Res. 46, 101866 (2020).

CAS  PubMed  Article  Google Scholar 

Marraudino, M. et al. G-protein-coupled estrogen receptor immunoreactivity in the rat hypothalamus is widely distributed in neurons, astrocytes, and oligodendrocytes, fluctuates during the estrous cycle, and is sexually dimorphic. Neuroendocrinology 111, 660–677 (2021).

CAS  PubMed  Article  Google Scholar 

Villa, A. et al. Sex-specific features of microglia from adult mice. Cell Rep. 23, 3501–3511 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Guneykaya, D. et al. Transcriptional and translational differences of microglia from male and female brains. Cell Rep. 24, 2773–2783 (2018).

CAS  PubMed  Article  Google Scholar 

Tramunt, B. et al. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia 63, 453–461 (2020).

Ludwig, M. Q. et al. A genetic map of the mouse dorsal vagal complex and its role in obesity. Nat. Metab. 3, 530–545 (2021).

CAS  PubMed  Article  Google Scholar 

Ludwig, M. Q., Todorov, P. V., Egerod, K. L., Olson, D. P. & Pers, T. H. Single-cell mapping of GLP-1 and GIP receptor expression in the dorsal vagal complex. Diabetes 70, 1945–1955 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Filippi, B. M. et al. Insulin signals through the dorsal vagal complex to regulate energy balance. Diabetes 63, 892–899 (2014).

CAS  PubMed  Article  Google Scholar 

Hayes, M. R. et al. Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation. Cell Metab. 11, 77–83 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Williams, E. K. et al. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166, 209–221 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Muller, T. D. et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30, 72–130 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Grill, H. J. & Hayes, M. R. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab. 16, 296–309 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hayes, M. R., Mietlicki-Baase, E. G., Kanoski, S. E. & De Jonghe, B. C. Incretins and amylin: neuroendocrine communication between the gut, pancreas, and brain in control of food intake and blood glucose. Annu. Rev. Nutr. 34, 237–260 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Reiner, D. J. et al. Astrocytes regulate GLP-1 receptor-mediated effects on energy balance. J. Neurosci. 36, 3531–3540 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yulyaningsih, E. et al. Acute lesioning and rapid repair of hypothalamic neurons outside the blood–brain barrier. Cell Rep. 19, 2257–2271 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Luo, L. et al. Optimizing nervous system-specific gene targeting with cre driver lines: prevalence of germline recombination and influencing factors. Neuron 106, 37–65 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pak, T., Yoo, S., Miranda-Angulo, A. L., Wang, H. & Blackshaw, S. Rax–CreERT2 knock-in mice: a tool for selective and conditional gene deletion in progenitor cells and radial glia of the retina and hypothalamus. PLoS ONE 9, e90381 (2014).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Zhou, Y. et al. Author Correction: Temporal dynamic reorganization of 3D chromatin architecture in hormone-induced breast cancer and endocrine resistance. Nat. Commun. 11, 1967 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Magnani, L. et al. Genome-wide reprogramming of the chromatin landscape underlies endocrine therapy resistance in breast cancer. Proc. Natl Acad. Sci. USA 110, E1490–E1499 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Liu, Z. et al. Short-term tamoxifen treatment has long-term effects on metabolism in high-fat diet-fed mice with involvement of Nmnat2 in POMC neurons. FEBS Lett. 592, 3305–3316 (2018).

CAS  PubMed  Article  Google Scholar 

O’Carroll, S. J., Cook, W. H. & Young, D. AAV targeting of glial cell types in the central and peripheral nervous system and relevance to human gene therapy. Front Mol. Neurosci. 13, 618020 (2020).

PubMed  Article  CAS  Google Scholar 

Howard, D. B., Powers, K., Wang, Y. & Harvey, B. K. Tropism and toxicity of adeno-associated viral vector serotypes 1, 2, 5, 6, 7, 8, and 9 in rat neurons and glia in vitro. Virology 372, 24–34 (2008).

CAS  PubMed  Article  Google Scholar 

Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Zhu, H. et al. Cre-dependent DREADD (designer receptors exclusively activated by designer drugs) mice. Genesis 54, 439–446 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

This work was supported by the European Research Council (ERC) Synergy Grant WATCH (Well Aging and the Tanycytic Control of Health), No 810331 to R. N., V. P. and M. S.

Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France

Sreekala Nampoothiri & Vincent Prevot

Universidade de Santiago de Compostela-Instituto de Investigation Sanitaria, Santiago de Compostela, Spain

CIBER Fisiopatologia de la Obesidad y Nutrition, Santiago de Compostela, Spain

Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

S. N. and V. P. designed the structure of the Review. S. N. wrote the first draft. R. N., M. S. and V. P. discussed and edited the manuscript.

The authors declare no competing interests.

Nature Metabolism thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Nampoothiri, S., Nogueiras, R., Schwaninger, M. et al. Glial cells as integrators of peripheral and central signals in the regulation of energy homeostasis. Nat Metab 4, 813–825 (2022). https://doi.org/10.1038/s42255-022-00610-z

DOI: https://doi.org/10.1038/s42255-022-00610-z

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Nature Metabolism (Nat Metab) ISSN 2522-5812 (online)

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.